Heat Mapping and Plastic Strain Radius Modeling of Dual-Tool Friction Stir Welds 6061 Aluminum Alloy Plate Using FEM

Rikko Putra Youlia, Diah Utami, Dedik Romahadi, Tang Yishuang

Abstract


This study investigates the effects of Dual-Tool Friction Stir Welding (DT-FSW) parameters on the weld quality of 8 mm thick 6061 aluminum alloy plates, specifically focusing on the elimination or minimization of the "pass-overlap zone" that’s a gap typically observed at the mid-section of the weld cross-section resembling characteristics of the Heat-Affected Zone (HAZ). To address ongoing debates regarding the optimal joint performance concerning this overlap, symmetric increases in the dimensions of both FSW tools were implemented to analyze resultant temperature fields and plastic strain adaptations at the weld interfaces. Simulation visualizations were conducted with tool density variations at intervals of 0.2 mm and 0.4 mm. Results indicate that increasing tool density, thereby reducing the distance between tool surfaces, leads to a decrease in peak temperatures generated during welding. This reduction in temperature correlates with a more uniform distribution of plastic strain rates across all layers of the material—upper, middle, and lower—with the leading edge exhibiting the most significant improvement in strain uniformity. Conversely, during the stabilization phase, a decrease in tool density (S) results in a reduction of the maximum equivalent plastic strain rate. These findings suggest that careful adjustment of tool density in DT-FSW processes can enhance weld quality by promoting more uniform mechanical and thermal properties across the joint.


Keywords


double-sided friction stir welding; aluminum alloy 6061; finite element method; nodal temperature; equivalent plastic strain

Full Text:

PDF

References


M. Boukraa, T. Chekifi, and N. Lebaal, “Friction stir welding of aluminum using a multi-objective optimization approach based on both taguchi method and grey relational analysis,” Exp. Tech., vol. 47, no. 3, pp. 603–617, 2023, doi: 10.1007/s40799-022-00573-6.

N. F. Alkayem, B. Parida, and S. Pal, “Optimization of friction stir welding process using NSGA-II and DEMO,” Neural Comput. Appl., vol. 31, no. s2, pp. 947–956, 2019, doi: 10.1007/s00521-017-3059-8.

B. Rahmatian, S. E. Mirsalehi, and K. Dehghani, “metallurgical and mechanical characterization of double-sided friction stir welded thick AA5083 aluminum alloy joints,” Trans. Indian Inst. Met., vol. 72, no. 10, pp. 2739–2751, 2019, doi: 10.1007/s12666-019-01751-8.

N. Guo, Y. Fu, Y. Wang, Q. Meng, and Y. Zhu, “Microstructure and mechanical properties in friction stir welded 5A06 aluminum alloy thick plate,” Mater. Des., vol. 113, no. 10, pp. 273–283, 2017, doi: 10.1016/j.matdes.2016.10.030.

R. M. Leal and A. Loureiro, “Effect of overlapping friction stir welding passes in the quality of welds of aluminium alloys,” mater. des., vol. 29, no. 5, pp. 982–991, 2008, doi: 10.1016/j.matdes.2007.03.018.

K. Umanath, K. Palanikumar, V. Sankaradass, and K. Uma, “Optimizations of friction stir welding process parameters of AA6063 Aluminium alloy by Taguchi technique,” mater. today proc., vol. 46, no. 3, pp. 4008–4013, 2020, doi: 10.1016/j.matpr.2021.02.539.

G. Buffa, D. Campanella, A. Forcellese, L. Fratini, U. La Commare, and M. Simoncini, “In-process control strategies for friction stir weld-ing of AZ31 sheets with non-uniform thickness,” int. j. adv. manuf. technol., vol. 95, no. 1–4, pp. 493–504, 2018, doi: 10.1007/s00170-017-1223-z.

A. Azadi Chegeni and P. Kapranos, “A microstructural evaluation of friction stir welded 7075 aluminum rolled plate heat treated to the semi-solid state,” Metals (Basel)., vol. 8, no. 1, 2018, doi: 10.3390/met8010041.

A. E. Abere, A. A. Tsegaw, and R. B. Nallamothu, “Process parameters optimization of bobbin tool friction stir welding on aluminum alloy 6061-T6 using combined artificial neural network and genetic algorithm,” J. Brazilian Soc. Mech. Sci. Eng., vol. 44, no. 11, pp. 1–12, 2022, doi: 10.1007/s40430-022-03870-8.

M. V. R. D. Prasad and K. Kumar Namala, “Process parameters optimization in friction stir welding by ANOVA,” Mater. Today Proc., vol. 5, no. 2, pp. 4824–4831, 2018, doi: 10.1016/j.matpr.2017.12.057.

J. Sarvaiya and D. Singh, “Selection of the optimal process parameters in friction stir welding/processing using particle swarm optimi-zation algorithm,” Mater. Today Proc., vol. 62, pp. 896–901, 2022, doi: 10.1016/j.matpr.2022.04.062.

S. Meng, H. Liu, J. Xiao, T. Huang, Y. Ni, and S. Sun, “A method for process parameter optimization of simultaneous double-sided friction stir welding using a heat transfer model,” Int. J. Adv. Manuf. Technol., vol. 121, no. 5–6, pp. 3747–3758, 2022, doi: 10.1007/s00170-022-09544-y.

X. Lu, W. Zhang, X. Sun, S. Sun, and S. Y. Liang, “A study on temperature field and process of FSW thick 2219 aluminum alloy plate,” J. Brazilian Soc. Mech. Sci. Eng., vol. 45, no. 6, pp. 1–14, 2023, doi: 10.1007/s40430-023-04254-2.

H. Luo, T. Wu, J. Fu, W. Wang, N. Chen, and H. Wang, “Welding characteristics analysis and application on spacecraft of friction stir welded 2A14-T6 aluminum alloy,” Materials (Basel)., vol. 12, no. 3, 2019, doi: 10.3390/ma12030480.

Z. Liang, X. Wang, C. Cai, and D. Wang, “Microstructure and mechanical properties of thick plate friction stir welds for 6082-t6 alumi-num alloy,” High Temp. Mater. Process., vol. 38, no. 2019, pp. 525–532, 2019, doi: 10.1515/htmp-2018-0074.

Y. Hu, H. Liu, S. Li, S. Du, and D. P. Sekulic, “Improving mechanical properties of a joint through tilt probe penetrating friction stir weld-ing,” Mater. Sci. Eng. A, vol. 731, no. September 2017, pp. 107–118, 2018, doi: 10.1016/j.msea.2018.06.036.

I. Morozova et al., “Precipitation phenomena in impulse friction stir welded 2024 aluminium alloy,” Mater. Sci. Eng. A, vol. 852, no. Jan-uary 2022, pp. 1–11, 2022, doi: 10.1016/j.msea.2022.143617.

C. de Souza Carvalho Machado et al., “How microstructure affects localized corrosion resistance of stir zone of the AA2198-T8 alloy after friction stir welding,” Mater. Charact., vol. 174, no. February, 2021, doi: 10.1016/j.matchar.2021.111025.

J. Marzbanrad, M. Akbari, P. Asadi, and S. Safaee, “Characterization of the Influence of Tool Pin Profile on Microstructural and Mechan-ical Properties of Friction Stir Welding,” Metall. Mater. Trans. B Process Metall. Mater. Process. Sci., vol. 45, no. 5, pp. 1887–1894, 2014, doi: 10.1007/s11663-014-0089-9.

Hendrato, Jamasri, Triyono, and P. Puspitasari, “Mechanical properties and microstructure evolution of double-sided friction stir welding AA6061-T6,” Key Eng. Mater., vol. 935, no. 11, pp. 73–81, 2022, doi: 10.4028/p-08610s.

K. Krasnowskp, P. Sedek, M. Łomozik, and A. Pietras, “Impact of selected FSW process parameters on mechanical properties of 6082-T6 aluminium alloy butt joints,” Arch. Metall. Mater., vol. 56, no. 4, pp. 965–973, 2011, doi: 10.2478/v10172-011-0106-9.

I. HEJAZI and S. E. MIRSALEHI, “Effect of pin penetration depth on double-sided friction stir welded joints of AA6061-T913 alloy,” Trans. Nonferrous Met. Soc. China, vol. 26, no. 3, pp. 676–683, 2016, doi: 10.1016/S1003-6326(16)64158-4.

R. Kumar, S. Varghese, and M. Sivapragash, “A comparative study of the mechanical properties of single and double sided friction stir welded aluminium joints,” Procedia Eng., vol. 38, pp. 3951–3961, 2012, doi: 10.1016/j.proeng.2012.06.452.

Y. Zou et al., “A comparative study of microstructure and mechanical properties of conventional and synergistic double-sided FSW joints of 6061 zxaluminium alloy,” Sci. Technol. Weld. Join., no. 6, pp. 1–8, 2023, doi: 10.1080/13621718.2023.2227815.

M. Kumar, R. Kumar, and S. D. Kore, “Modeling and analysis of effect of tool geometry on temperature distribution and material flow in friction stir welding of AA6061-T6,” J. Brazilian Soc. Mech. Sci. Eng., vol. 44, no. 4, pp. 1–24, 2022, doi: 10.1007/s40430-022-03456-4.

L. A. Bergmann, B. F. Batistão, N. G. de Alcântara, P. Gargarella, and B. Klusemann, “Effect of rotational speed and double-sided weld-ing in friction stir–welded dissimilar joints of aluminum alloy and steel,” Weld. World, vol. 66, no. 9, pp. 1747–1756, 2022, doi: 10.1007/s40194-022-01333-1.

B. Bagheri, F. Sharifi, M. Abbasi, and A. Abdollahzadeh, “On the role of input welding parameters on the microstructure and mechanical properties of Al6061-T6 alloy during the friction stir welding: Experimental and numerical investigation,” Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl., vol. 236, no. 2, pp. 299–318, 2022, doi: 10.1177/14644207211044407.

D. Yi, T. Onuma, S. Mironov, Y. S. Sato, and H. Kokawa, “Evaluation of heat input during friction stir welding of aluminium alloys,” Sci. Technol. Weld. Join., vol. 22, no. 5, pp. 41–46, 2017, doi: 10.1080/13621718.2016.1183079.




DOI: http://dx.doi.org/10.22441/ijimeam.v6i2.28235

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Rikko Putra Youlia, Diah Utami, Dedik Romahadi, Tang Yishuang

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

INDEXED IN

 

Publisher Address:
Universitas Mercu Buana
Program Studi S2 Teknik Mesin
Jl. Meruya Selatan No. 1, Jakarta 11650, Indonesia
Phone/Fax. (+6221) 5871335
Email [email protected]
Homepage http://teknikmesin.ft.mercubuana.ac.id/

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.