Review: Optimizing Plastic Injection Processes for Enhanced Quality and Sustainable Manufacturing
Abstract
In the automotive world, plastic products are components that cannot be separated. Almost all automotive products use plastic because it is easy to produce, and the price is relatively cheap compared to other materials. For applications such as covers, the demand on plastic surface quality are higher than for different uses. Therefore, a lot of costs are incurred to achieve this quality. However, ongoing efforts have decreased the time and expense of developing plastic molds. Many researchers have conducted studies to improve the quality of these products. This review consolidates several research articles on optimizing plastic injection processes to reduce defects and improve product quality. Techniques such as Taguchi Method, Response Surface Methodology (RSM), Artificial Neural Networks (ANN), and Finite Element Method (FEM) were evaluated in this research. This review highlights the importance of process parameters such as melt temperature, injection pressure, and cooling time, as well as the role of digital simulation in designing efficient and sustainable molds. The results of the study show that in several studies, defects often occur in the product without carrying out the optimization process. Still, the Taguchi and ANOVA methods can reduce the weld line and sink after optimizing the process parameters, such as melting temperature, injection pressure, cooling time, and injection speed. Mark up to 30%. These findings highlight the potential of these techniques to significantly improve product quality and support more sustainable manufacturing practices in the plastic injection molding industry.
Keywords
Full Text:
PDFReferences
S. Sulistyono and A. Dani, “Variasi waktu dan tekanan injeksi terhadap perubahan berat produk corong pada cetak plastik sistem injeksi,” J-Proteksion J. Kaji. Ilm. dan Teknol. Tek. Mesin, vol. 7, no. 2, pp. 64–68, 2023, doi: 10.32528/jp.v7i2.9235.
S. Kitayama, K. Tamada, M. Takano, and S. Aiba, “Numerical optimization of process parameters in plastic injection molding for minimizing weldlines and clamping force using conformal cooling channel,” J. Manuf. Process., vol. 32, no. March, pp. 782–790, 2018, doi: 10.1016/j.jmapro.2018.04.007.
R. M. Khan and G. Acharya, “Plastic injection molding process and its aspects for quality: A review,” Eur. J. Adv. Eng. Technol., vol. 3, no. 4, pp. 66–70, 2016.
and R. V. D. Mathivanan, M. Nouby, “Minimization of sink mark defects in injection molding process – Taguchi approach,” Int. J. Eng. Sci. Technol., vol. 2, no. 2, pp. 12–15, 2010, doi: 10.4314/ijest.v2i2.59133.
M. Inui, S. Onishi, and N. Umezu, “Visualization of potential sink marks using thickness analysis of finely tessellated solid model,” J. Comput. Des. Eng., vol. 5, no. 4, pp. 409–418, 2018, doi: 10.1016/j.jcde.2018.02.003.
S. Q. Ch’Ng, S. M. Nasir, M. Fathullah, N. Z. Noriman, and M. H. M. Hazwan, “Warpage analysis on thick shell part using response surface methodology (RSM) to optimize parameter setting in injection molding process,” AIP Conf. Proc., vol. 2030, no. September 2019, 2018, doi: 10.1063/1.5066808.
C. Nitnara and K. Tragangoon, “Simulation-based optimization of injection molding process parameters for minimizing warpage by ANN and GA,” Int. J. Technol., vol. 14, no. 2, pp. 422–433, 2023, doi: 10.14716/ijtech.v14i2.5573.
N. R. Pothula, “Minimization of sink mark defects in injection molding process,” Int. J. Excell. Innov. Dev., vol. 2, no. 1, pp. 012–015, 2019.
S. Jiang, T. Li, X. Xia, X. Peng, J. Li, and P. Zhao, “Reducing the sink marks of a crystalline polymer using external gas-assisted injection mold-ing,” Adv. Polym. Technol., vol. 2020, 2020, doi: 10.1155/2020/3793505.
Y. C. Chen, C. C. Hsu, and C. H. Hsu, “Numerical simulation for predicting sink marks on injection molding and injection compression molding process,” AIP Conf. Proc., vol. 2205, pp. 1–6, 2020, doi: 10.1063/1.5142929.
G. Gumono, Z. J. AR, A. Sujatmiko, and C. Adityaca, “The effect of heating and cooling media temperature on injection molding products shrinkage,” Asian J. Sci. Eng., vol. 1, no. 2, p. 79, 2023, doi: 10.51278/ajse.v1i2.547.
Z. Ma et al., “A novel and simple method to improve thermal imbalance and sink mark of gate region in injection molding,” Int. Commun. Heat Mass Transf., vol. 127, no. August, p. 105498, 2021, doi: 10.1016/j.icheatmasstransfer.2021.105498.
I. Mawardi, A. Jannifar, and H. Lubis, “Effect of injection temperature on defect plastic products,” IOP Conf. Ser. Mater. Sci. Eng., vol. 536, no. 1, 2019, doi: 10.1088/1757-899X/536/1/012102.
I. G. Ayu, M. Fitri, and Nurato, Korosi dan pencegahan korosi pada bahan logam. Deepublish, 2022.
I. G. A. Arwati et al., “Effect of chitosan on the corrosion inhibition for aluminium alloy in H2SO4 medium,” Proc. WHEC 2022 - 23rd World Hydrog. Energy Conf. Bridg. Cont. by H2, pp. 720–722, 2022.
R. Ramakrishnan and K. Mao, “Minimization of shrinkage in injection molding process of acetal polymer gear using Taguchi DOE optimization and ANOVA method,” Int. J. Mech. Ind. Technol., vol. 4, no. 2, pp. 72–79, 2016.
J. Sreedharan and A. K. Jeevanantham, “Analysis of shrinkages in ABS Injection molding parts for automobile applications,” Mater. Today Proc., vol. 5, no. 5, pp. 12744–12749, 2018, doi: 10.1016/j.matpr.2018.02.258.
S. Li, G. Zhao, G. Dong, and J. Wang, “Study on reducing sink mark depth of a microcellular injection molded part with many reinforcing ribs.pdf,” J. Cell. Plast., vol. 52, no. 5, pp. 479–502, 2016, doi: 10.1177/0021955X15579244.
N. M. Mehat, S. Mohd Kassim, and S. Kamaruddin, “Investigation on the effects of processing parameters on shrinkage behaviour and tensile properties of injection moulded plastic gear via the Taguchi method,” J. Phys. Conf. Ser., vol. 908, no. 1, pp. 0–8, 2017, doi: 10.1088/1742-6596/908/1/012049.
Q. M. Usman Jan, T. Habib, S. Noor, M. Abas, S. Azim, and Q. M. Yaseen, “Multi response optimization of injection moulding process parame-ters of polystyrene and polypropylene to minimize surface roughness and shrinkage’s using integrated approach of S/N ratio and composite desirability function,” Cogent Eng., vol. 7, no. 1, 2020, doi: 10.1080/23311916.2020.1781424.
F. Hentati, I. Hadriche, N. Masmoudi, and C. Bradai, “Optimization of the injection molding process for the PC/ABS parts by integrating Taguchi approach and CAE simulation,” Int. J. Adv. Manuf. Technol., vol. 104, no. 9–12, pp. 4353–4363, 2019, doi: 10.1007/s00170-019-04283-z.
E. Farotti and M. Natalini, “Injection molding. Influence of process parameters on mechanical properties of polypropylene polymer. A first study.,” Procedia Struct. Integr., vol. 8, no. January, pp. 256–264, 2018, doi: 10.1016/j.prostr.2017.12.027.
S. M. Nasir, Z. Shayfull, S. Sharif, A. E. Abdellah, M. Fathullah, and N. Z. Noriman, “Evaluation of shrinkage and weld line strength of thick flat part in injection moulding process,” J. Brazilian Soc. Mech. Sci. Eng., vol. 43, no. 10, p. 452, 2021, doi: 10.1007/s40430-021-03060-y.
U. Abid, Z. Waris, M. S. Irfan, and Y. Q. Gill, “Taguchi optimization approach to optimize processing parameters for reduced warpage & sink marks in monitor back shell manufacturing,” PAKPLAS Magazine 2020, November 2020.
R. Jaafar, H. Arep, E. Mohamad, J. Abd Razak, M. Arfauz A Rahman, and R. Yuniarti, “Analysis on volumetric shrinkage of plastic food container made from an injection molding process,” J. Eng. Manag. Ind. Syst., vol. 8, no. 2, pp. 22–31, 2020, doi: 10.21776/ub.jemis.2020.008.02.3.
P. Pachorkar, G. Singh, N. Agarwal, and A. Srivastava, “Multi response optimization of injection moulding process to reduce sink marks and cycle time,” Mater. Today Proc., vol. 72, no. October, pp. 1089–1093, 2023, doi: 10.1016/j.matpr.2022.09.172.
E. A. Wibowo, M. N. W. Hidayah, R. Setiawan, Y. T. Wibowo, and B. L. Krisna, “Optimization of plastic injection molding process parameters for cowl B (L/R) sink mark defects by using taguchi methods and ANOVA,” Oper. Excell. J. Appl. Ind. Eng., vol. 15, no. 1, p. 21, 2023, doi: 10.22441/oe.2023.v15.i1.069.
V. L. Trinh, T. D. Hoang, V. D. Pham, X. C. Nguyen, T. S. Nguyen, and N. S. Dinh, “Study on the influence of injection molding parameters on the warpage and shrinkage in hot runner system mold,” Int. J. Mod. Manuf. Technol., vol. 15, no. 1, pp. 155–165, 2023, doi: 10.54684/ijmmt.2023.15.1.155.
A. A. Adel, S. M. Nasir, M. Fathullah, M. H. N. Hidayah, N. Kassim, and L. K. Wei, “Optimizing of shrinkage on plastic injection moulding flat part using response surface methodology,” AIP Conf. Proc., vol. 2991, no. 1, 2024, doi: 10.1063/5.0198588.
M. A. Md Ali et al., “Fill time optimization analysis in flow simulation of injection molding using response surface method,” Malaysian J. Com-pos. Sci. Manuf., vol. 4, no. 1, pp. 28–39, 2021, doi: 10.37934/mjcsm.4.1.2839.
M. U. Rosli et al., “Simulation-based optimization of plastic injection molding parameters for mini centrifugal pump body using response sur-face methodology,” IOP Conf. Ser. Mater. Sci. Eng., vol. 932, no. 1, 2020, doi: 10.1088/1757-899X/932/1/012111.
A. Goyal, V. K. Pathak, S. Ogra, and A. Pandey, “Investigation of injection molding process parameters characteristics using RSM approach,” Int. J. Eng. Sci. Technol., vol. 12, no. 3, pp. 16–25, 2020, doi: 10.4314/ijest.v12i3.2.
H. R. Ong et al., “Rejection rate reduction of the automotive thermoplastic parts in injection Moulding using response surface methodology,” Key Eng. Mater., vol. 841 KEM, pp. 225–231, 2020, doi: 10.4028/www.scientific.net/KEM.841.225.
T. P. Hidayat, A. Sugioko, and Catherine Williana, “Penentuan setting optimal mesin injection moulding menggunakan metode response sur-face,” Metris J. Sains dan Teknol., vol. 25, no. 01, pp. 5–12, 2024, doi: 10.25170/metris.v25i01.5406.
M. H. Muddin and M. Mas’ud, “Optimasi parameter mesin injection molding terhadap cacat short shot menggunakan response surface methodology,” Elem. J. Tek. Mesin, vol. 10, no. 2, pp. 71–80, 2023, doi: 10.34128/je.v10i2.259.
Y. Sari, A. Santoso, and N. A. P. Pangestu, "The Adoption of the response surface methodology within the DMAIC Process to achieve optimal solutions in reducing product defect," Proceedings of the 4th International Conference on Informatics, Technology and Engineering 2023 (In-CITE 2023), 2023, doi: 10.2991/978-94-6463-288-0_13.
M. Asif, “Optimization of working parameters to improve the quality of plastics in an injection molding process,” Egypt. Int. J. Eng. Sci. Tech-nol., vol. 0, no. 0, pp. 0–0, 2022, doi: 10.21608/eijest.2022.159957.1181.
J. Lee, J. Kim, and J. Kim, “A study on the architecture of Artificial Neural Network Considering injection-molding process steps,” Polymers (Basel)., vol. 15, no. 23, 2023, doi: 10.3390/polym15234578.
C. Lee et al., “Development of Artificial Neural Network System to recommend process conditions of injection molding for various geome-tries,” Adv. Intell. Syst., vol. 2, no. 10, 2020, doi: 10.1002/aisy.202000037.
H. Lee, Y. Liau, and K. Ryu, “Real-time parameter optimization based on neural network for smart injection molding,” IOP Conf. Ser. Mater. Sci. Eng., vol. 324, no. 1, 2018, doi: 10.1088/1757-899X/324/1/012076.
J. Lee, D. Yang, K. Yoon, and J. Kim, “Effects of input parameter range on the accuracy of artificial neural network prediction for the injection molding process,” Polymers (Basel)., vol. 14, no. 9, 2022, doi: 10.3390/polym14091724.
L. Chen, X. Zhou, Z. Huang, and H. Zhou, “Three-dimensional transient finite element cooling simulation for injection molding tools,” Int. J. Adv. Manuf. Technol., vol. 120, Jun. 2022, doi: 10.1007/s00170-022-09154-8.
R. A. Achmaed Pratama, Aminnudin, Y. R. Aji Pradana, and N. Afifah, “Analysis of coolant temperature and injection time effect on the product quality in injection moulding using the Finite Element Method (FEM),” IOP Conf. Ser. Mater. Sci. Eng., vol. 1034, no. 1, p. 012097, 2021, doi: 10.1088/1757-899x/1034/1/012097.
F. Zwicke, M. Behr, and S. Elgeti, “Predicting shrinkage and warpage in injection molding: Towards automatized mold design,” AIP Conf. Proc., vol. 1896, 2017, doi: 10.1063/1.5008119.
X. Sun, P. Tibbenham, D. Zeng, X. Su, S. Huang, and H. tae Kang, “Procedure development for predicting the sink mark of injection molded thermoplastics by finite element method,” Int. J. Adv. Manuf. Technol., vol. 103, no. 9–12, pp. 4095–4107, 2019, doi: 10.1007/s00170-019-03687-1.
H. M. Magid, B. K. Dabis, and M. A. A. Siba, “Analysis of the main factors affecting mass production in the plastic molding process by using the finite element method,” Eastern-European J. Enterp. Technol., vol. 6, no. 1–114, pp. 65–71, 2021, doi: 10.15587/1729-4061.2021.248375.
B. Solanki and H. Singh, “Experimental and numerical studies of shrinkage and sink marks on injection molded polymer gears,” Research Square, Preprint, 2021, doi: 10.21203/rs.3.rs-421891/v1
R. Abdul, G. Guo, J. C. Chen, and J. J. W. Yoo, “Shrinkage prediction of injection molded high density polyethylene parts with taguchi/artificial neural network hybrid experimental design,” Int. J. Interact. Des. Manuf., vol. 14, no. 2, pp. 345–357, 2020, doi: 10.1007/s12008-019-00593-4.
M. Moayyedian, A. Dinc, and A. Mamedov, “Optimization of injection-molding process for thin-walled polypropylene part using artificial neu-ral network and Taguchi techniques,” Polymers (Basel)., vol. 13, no. 23, 2021, doi: 10.3390/polym13234158.
K. Yang, Y. Wang, and G. Wang, “Research on the injection mold design and molding process parameter optimization of a car door inner pan-el,” Adv. Mater. Sci. Eng., vol. 2022, 2022, doi: 10.1155/2022/7280643.
M. EL Ghadoui, A. Mouchtachi, and R. Majdoul, “A hybrid optimization approach for intelligent manufacturing in plastic injection molding by using artificial neural network and genetic algorithm,” Sci. Rep., vol. 13, no. 1, pp. 1–15, 2023, doi: 10.1038/s41598-023-48679-0.
DOI: http://dx.doi.org/10.22441/ijimeam.v7i1.31721
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Asaeli Tongoni Lase, I Gusti Ayu Arwati

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
INDEXED IN
Publisher Address:
Universitas Mercu Buana
Program Studi S2 Teknik Mesin
Jl. Meruya Selatan No. 1, Kembangan, Jakarta 11650, Indonesia
Phone/Fax. (+6221) 5871335
Email [email protected]
Homepage mercubuana.ac.id/magister-teknik-mesin
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.