Structured Defect Data-Based K-Means Clustering Analysis and Framework for Quality Control (QC) Prioritization in Manufacturing

Jakfat Haekal, Rizaldi Mu’min

Abstract


Quality Control (QC) sangat penting dalam manufaktur untuk memastikan kualitas produk dan meminimalisir cacat produk. Namun, meningkatnya kompleksitas produk dan proses manufaktur telah membuat identifikasi dan prioritas cacat untuk QC menjadi lebih menantang, sementara sebagian besar studi hanya berfokus pada inspeksi visual. Oleh karena itu, studi ini mengusulkan analisis berbasis data cacat terstruktur dan kerangka kerja untuk menemukan prioritas dalam proses QC. Kerangka kerja ini menggunakan pengelompokan K-Means untuk mengelompokkan cacat berdasarkan karakteristiknya, seperti jenis, lokasi, dan tingkat keparahan yang memengaruhi tingkat biaya perbaikan. Untuk memvalidasi model, Davis-Bouldin Index dan Silhouette Score digunakan untuk mengukur kualitas model. Eksplorasi data menunjukkan bahwa setiap fitur memiliki hubungan serta dampak terhadap biaya perbaikan di mana tingkat keparahan yang lebih besar sejalan dengan biaya perbaikan yang lebih tinggi. Penemuan menunjukkan bahwa cluster 0 adalah yang harus diprioritaskan karena memiliki biaya perbaikan tertinggi di antara yang lain. Hasil penelitian menunjukkan bahwa kerangka kerja tersebut dapat secara efektif mengidentifikasi dan memprioritaskan cacat untuk QC, yang berpotensi mengarah pada peningkatan kualitas produk dan pengurangan biaya manufaktur.


Keywords


Defects; Quality Control; K-Means Clustering; Manufacturing; Prioritization

Full Text:

PDF

References


Stershic, J., Igogo, T., & Carpenter, A. (2021). Sustainability of the US Manufacturing Sector: Use of the United Nations Sustainable Development Goals (No. NREL/TP-6A20-80732). National Renewable Energy Lab.(NREL), Golden, CO (United States).

Colledani, M., Copani, G., & Rosa, P. (2014). Zero Waste PCBs: a new integrated solution for key-metals recovery from PCBs. In Proceedings of SUM 2014, Second Symposium on Urban Mining (pp. 1-16).

Sreedharan V, R., Kannan S, S., P, A., & Trehan, R. (2018). Defect reduction in an electrical parts manufacturer: a case study. The TQM Journal, 30(6), 650-678.

ElMekkawy, T. Y., Hachkowski, P. A., Strong, D., & Mann, D. D. (2006). Defect analysis for quality and productivity improvements in a manufacturing system. Canadian Biosystems Engineering, 48, 7.

Kumar, M., Singh, B., Yadav, P., Bhatt, V., Kumar, M., Singh, K., ... & Yun, J. H. (2017). Effect of structural defects, surface roughness on sensing properties of Al doped ZnO thin films deposited by chemical spray pyrolysis technique. Ceramics International, 43(4), 3562-3568.

Mane, M. L., Dhage, V. N., Sundar, R., Ranganathan, K., Oak, S. M., Shengule, D. R., & Jadhav, K. M. (2011). Effects of Nd: YAG laser irradiation on structural, morphological, cation distribution and magnetic properties of nanocrystalline CoFe2O4. Applied surface science, 257(20), 8511-8517.

Mehta, N., Gohil, A. V., Dave, K. G., & Patel, V. B. (2021). Development of casting defect analysis module through integrated approach for small and medium scale industries. Materials Today: Proceedings, 38, 2935-2942.

Saad, N. H., Sabri, N. M., Hasan, A. F., Ali, A., & Saleh, H. M. (2015). Defect segmentation of semiconductor wafer image using k-means clustering. Applied Mechanics and Materials, 815, 374-379.

Xiao, Q., Wang, Y., Zhao, Z. J., Pei, C., Chen, S., Gao, L., ... & Gong, J. (2020). Defect-mediated reactivity of Pt/TiO 2 catalysts: the different role of titanium and oxygen vacancies. Science China Chemistry, 63, 1323-1330.

David, M., & Firdaus, M. (2024). Defect Rate Prediction in Manufacturing Process Using K-Nearest Neighbor Algorithm. International Journal Of Informatics, Economics, Management And Science, 3(2), 161-173. doi:10.52362/ijiems.v3i2.1599

Desai, Anoop. (2009). Managing quality: The transition from reactive to proactive strategies. International Journal of Product Development - Int J Prod Dev. 8. 10.1504/IJPD.2009.023749.

Watts, D. H., Huang, S., Culnane, M., Kaiser, K. A., Scheuerle, A., Mofenson, L., Stanley, K., Newell, M. L., Mandelbrot, L., Delfraissy, J. F., & Cunningham, C. K. (2011). Birth defects among a cohort of infants born to HIV-infected women on antiretroviral medication. Journal of perinatal medicine, 39(2), 163–170. https://doi.org/10.1515/jpm.2010.139

Chen, S. T., Wilson, T. G., Jr, & Hämmerle, C. H. (2004). Immediate or early placement of implants following tooth extraction: review of biologic basis, clinical procedures, and outcomes. The International journal of oral & maxillofacial implants, 19 Suppl, 12–25.

Ran, X., Zhou, X., Lei, M., Tepsan, W., & Deng, W. (2021). A Novel K-Means Clustering Algorithm with a Noise Algorithm for Capturing Urban Hotspots. Applied Sciences, 11(23), 11202. https://doi.org/10.3390/app112311202

Breneman, J. E., Sahay, C., & Lewis, E. E. (2022). Introduction to reliability engineering. John Wiley & Sons.

Sanaei, N., & Fatemi, A. (2021). Defects in additive manufactured metals and their effect on fatigue performance: A state-of-the-art review. Progress in Materials Science, 117, 100724.

Yang, J., Li, S., Wang, Z., Dong, H., Wang, J., & Tang, S. (2020). Using deep learning to detect defects in manufacturing: a comprehensive survey and current challenges. Materials, 13(24), 5755.

Psarommatis, F., May, G., Dreyfus, P. A., & Kiritsis, D. (2020). Zero defect manufacturing: state-of-the-art review, shortcomings and future directions in research. International journal of production research, 58(1), 1-17.

Shrifan, N. H., Jawad, G. N., Isa, N. A. M., & Akbar, M. F. (2020). Microwave nondestructive testing for defect detection in composites based on K-means clustering algorithm. IEEE Access, 9, 4820-4828.

Banerjee, S., Chaudhuri, A., & Chakrabarty, K. (2020). Analysis of the impact of process variations and manufacturing defects on the performance of carbon-nanotube FETs. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 28(6), 1513-1526.

Bhatt, P. M., Malhan, R. K., Rajendran, P., Shah, B. C., Thakar, S., Yoon, Y. J., & Gupta, S. K. (2021). Image-based surface defect detection using deep learning: A review. Journal of Computing and Information Science in Engineering, 21(4), 040801.

Le, X., Mei, J., Zhang, H., Zhou, B., & Xi, J. (2020). A learning-based approach for surface defect detection using small image datasets. Neurocomputing, 408, 112-120.

Ullah, I., Khan, R. U., Yang, F., & Wuttisittikulkij, L. (2020). Deep learning image-based defect detection in high voltage electrical equipment. Energies, 13(2), 392.

Zhao, Y., & Chen, J. (2022). A survey on differential privacy for unstructured data content. ACM Computing Surveys (CSUR), 54(10s), 1-28.

Adnan, K., & Akbar, R. (2019). An analytical study of information extraction from unstructured and multidimensional big data. Journal of Big Data, 6(1), 1-38.

Imoto, K., Nakai, T., Ike, T., Haruki, K., & Sato, Y. (2019). A CNN-based transfer learning method for defect classification in semiconductor manufacturing. IEEE Transactions on Semiconductor Manufacturing, 32(4), 455-459.

Czimmermann, T., Ciuti, G., Milazzo, M., Chiurazzi, M., Roccella, S., Oddo, C. M., & Dario, P. (2020). Visual-based defect detection and classification approaches for industrial applications—a survey. Sensors, 20(5), 1459.

Di, H., Ke, X., Peng, Z., & Dongdong, Z. (2019). Surface defect classification of steels with a new semi-supervised learning method. Optics and Lasers in Engineering, 117, 40-48.

Monje, A., Pons, R., Insua, A., Nart, J., Wang, H. L., & Schwarz, F. (2019). Morphology and severity of peri‐implantitis bone defects. Clinical Implant Dentistry and Related Research, 21(4), 635-643.

Wang, M., & Cheng, J. C. (2020). A unified convolutional neural network integrated with conditional random field for pipe defect segmentation. Computer‐Aided Civil and Infrastructure Engineering, 35(2), 162-177.

Zhang, H., Jiang, L., & Li, C. (2021). CS-ResNet: Cost-sensitive residual convolutional neural network for PCB cosmetic defect detection. Expert Systems with Applications, 185, 115673.

Brennan, M. C., Keist, J. S., & Palmer, T. A. (2021). Defects in metal additive manufacturing processes.

Fu, Y., Downey, A. R., Yuan, L., Zhang, T., Pratt, A., & Balogun, Y. (2022). Machine learning algorithms for defect detection in metal laser-based additive manufacturing: A review. Journal of Manufacturing Processes, 75, 693-710.

Goyal, A., Agrawal, R., & Saha, C. R. (2019). Quality management for sustainable manufacturing: Moving from number to impact of defects. Journal of Cleaner Production, 241, 118348.

Powell, D., Magnanini, M. C., Colledani, M., & Myklebust, O. (2022). Advancing zero defect manufacturing: A state-of-the-art perspective and future research directions. Computers in Industry, 136, 103596.

Mittal, H., Pandey, A. C., Saraswat, M., Kumar, S., Pal, R., & Modwel, G. (2022). A comprehensive survey of image segmentation: clustering methods, performance parameters, and benchmark datasets. Multimedia Tools and Applications, 1-26.

Ruspini, E. H., Bezdek, J. C., & Keller, J. M. (2019). Fuzzy clustering: A historical perspective. IEEE Computational Intelligence Magazine, 14(1), 45-55.

Serban, C., & Vescan, A. (2019, August). Predicting reliability by severity and priority of defects. In Proceedings of the 2nd ACM SIGSOFT International Workshop on Software Qualities and their Dependencies (pp. 27-34).

Akhmedov, B. A. (2021). Innovative cluster model for improving the quality of education. Academic Research in Educational Sciences, 2(3), 528-534.

Somu, N., MR, G. R., & Ramamritham, K. (2021). A deep learning framework for building energy consumption forecast. Renewable and Sustainable Energy Reviews, 137, 110591.

Ikotun, A. M., Ezugwu, A. E., Abualigah, L., Abuhaija, B., & Heming, J. (2023). K-means clustering algorithms: A comprehensive review, variants analysis, and advances in the era of big data. Information Sciences, 622, 178-210.

Pérez-Ortega, J., Almanza-Ortega, N. N., Vega-Villalobos, A., Pazos-Rangel, R., Zavala-Díaz, C., & Martínez-Rebollar, A. (2019). The K-means algorithm evolution. Introduction to data science and machine learning, 69-90.

Romanuke, V. (2023). Random centroid initialization for improving centroid-based clustering. Decision Making: Applications in Management and Engineering, 6(2), 734-746.

Faisal, M., & Zamzami, E. M. (2020, June). Comparative analysis of inter-centroid K-Means performance using euclidean distance, canberra distance and manhattan distance. In Journal of Physics: Conference Series (Vol. 1566, No. 1, p. 012112). IOP Publishing.

Sinaga, K. P., & Yang, M. S. (2020). Unsupervised K-means clustering algorithm. IEEE access, 8, 80716-80727.

Yuan, C., & Yang, H. (2019). Research on K-value selection method of K-means clustering algorithm. J, 2(2), 226-235.

Naeem, S., Ali, A., Anam, S., & Ahmed, M. M. (2023). An unsupervised machine learning algorithms: Comprehensive review. International Journal of Computing and Digital Systems.




DOI: http://dx.doi.org/10.22441/pasti.2024.v18i3.011

Refbacks

  • There are currently no refbacks.


Jurnal PASTI (Penelitian dan Aplikasi Sistem dan Teknik Industri)
Teknik Industri, Fakultas Teknik, Universitas Mercu Buana
Jl. Meruya Selatan, Kembangan, Jakarta Barat 11650
Tlp./Fax: +62215871335
p-ISSN: 2085-5869 / e-ISSN: 2598-4853
http://journal.mercubuana.ac.id/index.php/pasti/

 

This journal is accredited:

This journal is indexed by:

     

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Web
Analytics Made Easy - StatCounter
View My Stats