MSMEs and Fintech: A Comparison of Theory of Trying and Theory of Planned Behavior

Joko Rizkie Widokarti, Shine Pintor Siolemba Patiro, Sakina Nusarifa Tantri, Hety Budiyanti


Objectives: This study aims at examining the factors that trigger the intention of MSMEs owners to use fintech. The theories used in this study are Theory of Planned Behavior (TPB) and Theory of Trying (TT). This study compares the abilities of TT and TPB in predicting MSMEs and investors’ intentions in Indonesia when they use fintech services.

Methodology: The population in this study are MSME owners spread across Jakarta, Jogjakarta, Semarang, and Surabaya. The sample size in this study was 427 respondents. To collect the data, this study used a purposive sampling technique and a quantitative method through questionnaires. Structural Equation Modeling (SEM) with a two-stage approach is used to analyze the data.

Finding: The results of this study shows that TT fits better than TPB to explain the MSME’s owners’ intentions and behavior in using fintech services.

Conclusion: The conclusion of this study showed that attitudes, subjective norms, and perceived behavioral control are significant predictors of intention based on TPB. Furthermore, the results of this study support that social norms, frequency, and attitudes are significant predictors of intention in TT.


fintech; MSME; theory of planned behavior; theory of trying

Full Text:



Aaker, D.A., Kumar, V., Leone, V.P., & Day, G. S. (2013). Marketing research: International student version. New York: Wiley & Sons Inc.

Ahmed, A. S., Kumar, M., & Ali, M. A. M. (2020). Adoption of FinTech and Future Perspective: An Empirical Evidence from Bahrain on Digital Wallets.

Ahmed, S. and Ting, D. H. (2020). Shopping cues: Conceptualization, scale development, and validation. International Journal of Market Research, 62(1), 95–112.

Ajzen, I. (1988). Attitudes, Personality, and Behavior. Milton Keynes: Open University Press.

Ajzen, I. & Fishbein, M. (1980). Understanding Attitudes and Predicting Social Behavior. Englewood Cliffs, NJ: Prentice-Hall.

Ajzen, I., & Madden, T. J. (1986). Prediction of Goal Directed Behavior: Attitudes, Intentions, and Perceived Behavioral Control. Journal of Experimental Social Psychology, 22, 453–474

Alam, T. F., Sultana, N., & Rayhan, M. I. (2019). Structural equation modeling: an application of broadband penetration and GDP growth in Asia. Economic Structures, 8(17), 1–11.

Asare, M., Lanning, B. A., Montealegre, J. R., Akowuah, E., Adunlin, G., & Rose, T. (2022). Determinants of Low-Income Women’s Participation in Self-Collected Samples for Cervical Cancer Detection: Application of the Theory of Planned Behavior. Community Health Equity Research & Policy.

Ashta, A., & Biot-Paquerot, G. (2018). FinTech Evolution: Strategic Value Management Issues in a Fast Changing Industry. Strategic Change, 27, 301–11

Assosiasi Fintech Pendanaan Bersama Indonesia (2020). AFPI Jaga Industri Fintech Lending Terus Berkembang Positif di Tengah Pandemi Covid-19,, tersedia di, diakses pada tanggal 8 September 2020

Astini, R. dan Yustian, K. Y. (2020). Pengaruh Product Price, Individual Personality Differences, Environmental Friendliness pada Keputusan Pembelian. MIX: Jurnal Ilmiah Manajemen, 10(1), 141-149.

Bagozzi, R. P., & Kimmel, S. K. (1995). A comparison of leading theories for the prediction of goal?directed behaviors. British Journal of Social Psychology, 34(4), 437–461.

Bagozzi, R. (1992). The Self-Regulation of Attitudes, Intentions, and Behavior. Social Psychology Quarterly, 55(2), 178–204.

Bagozzi, R. P., & Warshaw, P. R. (1990). Trying to Consume. Journal of Consumer Research, 17(2), 127.

Bandura, A. (1991). Social Cognitive Theory of Self Regulation. Organizational Behavior and Human Decision Processes, 50(2), 248–287.

Booth, T. & Hughes, D. J. (2014). Exploratory Structural Equation Modeling of Personality Data. Assessment, 21(3), 260–271

Bottger, T., Rudolph, T., Evanschitzky, H., & Pfrang, T (2017). Customer Inspiration: Conceptualization, Scale Development, and Validation. Journal of Marketing, 81, 116–131

Brännback, M., Nikou, S., & Bouwman, H. (2017). Value systems and intentions to interact in social media: The digital natives. Telematics and Informatics, 34, 365–381.

Buckley, R. P., & Webster, S. (2016). FinTech in Developing Countries: Charting New Customer Journeys. Journal of Financial Transformation, 44, 1–20.

Budiyanti, H., & Patiro, S. P. S. (2018a). Perceived fairness, emotions, and intention of fast food chain restaurants customers in Indonesia. Gadjah Mada International Journal of Business, 20(2).

Burke, P. F., Eckert, C., & Sethi, S. (2020). A Multiattribute Benefits-Based Choice Model with Multiple Mediators: New Insights for Positioning. Journal of Marketing Research, 57(1), 35–54

Chaouali, W., Souiden, N., & Ladhari, R. (2017). Explaining adoption of mobile banking with the theory of trying, general self-confidence, and cynicism. Journal of Retailing and Consumer Services, 35, 57–67.

Chen, G., Zhao, L., & Huang, S.. (2020). Backpacker Identity: Scale Development and Validation. Journal of Travel Research, 59(2), 281–294.

Christy, F. E. (2021) Jumlah UMKM di Indonesia. TEMPO, tersedia di:, diakses pada 11 Mei 2021

Dharmmesta, B. S. (2000). Perilaku Mencoba Beli: Sebuah Kajian Analitis Model Bagozzi Warshaw untuk Panduan Peneliti. Jurnal Ekonomi Dan Bisnis Indonesia, 12(3), 1–27.

Eagly, A. H., & Chaiken, S. (1993). The Psychology of Attitude. Forth Worth: Harcout Brace Jovanovich College Publishers.

Elliott, M. L., Annchen R. Knodt, A. C., & Hariri, T. E. M. A. R. (2021). Need for Psychometric Theory in Neuroscience Research and Training:

Reply to Kragel et al. (2021). Psychological Science, 32(4), 627–629.

Ellis, J. M., & Helaire, L. J. (2022). Self-Efficacy, Subjective Norms, Self-Regulated Learning: An Application of the Theory of Planned Behavior With GEAR UP Students. Education and Urban Society, 1–32.

Fine, A., Baglivio, M. T., Cauffman, E., Wolff, K. T., & Piquero, A. R. (2018). Does the Effect of Self-Regulation on Adolescent Recidivism Vary by Youths’ Attitudes? Criminal Justice and Behavior, 45(2), 214–233.

Fu, J., & Mishra, M. (2022). Fintech in the Time of COVID−19: Technological Adoption during Crises. Journal of Financial Intermediation, 50(100945)

Geraldo, S. dan Evelyn (2020). Financial Help Seeking Behavior Pada Mahasiswa di Surabaya. MIX: Jurnal Ilmiah Manajemen, 10(1), 29-44.

Hair, Jr. J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2014). Multivariate Data Analysis. Pearson Education Limited.

Hardin-Fanning, F. & Ricks, J. M. (2016). Attitudes, social norms and perceived behavioral control factors influencing participation in a cooking skills program in rural Central Appalachia. Global Health Promotion, 24(4), 43–52

Hayashi, Y., Romanowich, P., & Hantula, D. A. (2022). Predicting Intention to Take a COVID-19 Vaccine in the United States: Application and Extension of Theory of Planned Behavior. American Journal of Health Promotion, 36(4), 710–713.

Hayashi, Y., & Tahmasbi, N. (2022). Psychological Predictors of Bystanders’ Intention to Help Cyberbullying Victims Among College Students: An Application of Theory of Planned Behavior. Journal of Interpersonal Violence, 37(13–14)

Hendrian and Patiro, S. P. S. (2019). Faktor-Faktor Psikologis Penentu Niat Ibu-Ibu Rumah Tangga di Indonesia Untuk Membeli Produk Tiruan/Palsu. MIX: Jurnal Ilmiah Manajemen, 9(1), 88-108

Hu, Z., Ding, S., Li, S., Chen, L., & Yang, S. (2019). Adoption Intention of Fintech Services for Bank Users: An Empirical Examination with an Extended Technology Acceptance Model. Symmetry, 11(340).

Hugh, M. L., Johnson, L. D., & Cook, C. (2022). Preschool teachers’ selection of social communication interventions for children with autism: An application of the theory of planned behavior. Autism, 26(1), 188–200.

Jordan, E. J., Boley, B. B., Knollenberg, W., & Kline, C. (2018). Predictors of Intention to Travel to Cuba across Three Time Horizons: An Application of the Theory of Planned Behavior. Journal of Travel Research, 57(7).

Keshavarzi, A., Asadi, S., Asadollahi, A., Mohammadkhah, F., & Jeihooni, A. K. (2022). Tendency to Breast Cancer Screening Among Rural Women in Southern Iran: A Structural Equation Modeling (SEM) Analysis of Theory of Planned Behavior. Breast Cancer: Basic and Clinical Research, 16(1–12).

Kock, N. (2019). Factor-based structural equation modeling with WarpPLS. Australasian Marketing Journal (AMJ), 27, 57–63

Kragel, P. A., Han, X., Kraynak, T. E., Gianaros, P. J., & Wager, T. D. (2021). Functional MRI can be highly reliable, but it depends on what you measure: A commentary on Elliott et al. (2020). Psychological Science, 32(4), 622–626.

Kusmaharani, A. S. and Halim, R. E. (2020). Social Influence and Online Impulse Buying of Indonesian Indie Cosmetic Products. MIX: Jurnal Ilmiah Manajemen, 10(2), 237-248.

Lee, I., & Shin, Y. J. (2018). Fintech: Ecosystem, Business Models, Investment Decisions, and Challenges. Business Horizons, 61, 35–46.

Leong, K. & Sung, A. (2018). "FinTech (Financial Technology): What is It and How to Use Technologies to Create Business Value in Fintech Way? International Journal of Innovation, Management, and Technology, 9(2), 74–78

Manggarani, C. A., Patiro, S. P. S., Notylia, L. R., and Wisudayati, T. A. (2022). The Negative Side of Brand Attachment in Producing Negative Consumer Behavior. MIX: Jurnal Ilmiah Manajemen, 11(3), 331-342.

Marko Sarstedt; Heungsun Hwang. (2020). Advances in composite based structural equation modeling. Behaviormetrika, 47, 213–217.

Mazambani, L., & Mutambara, E. (2020). Predicting FinTech Innovation Adoption in South Africa: The Case of Cryptocurrency. African Journal of Economic and Management Studies, 11, 30–50.

Menold, N. (2020). Rating-Scale Labeling in Online Surveys: An Experimental Comparison of Verbal and Numeric Rating Scales with Respect to Measurement Quality and Respondents’ Cognitive Processes. Sociological Methods & Research, 49(1), 79–107

Mlyakado, B. P., & Li, J. C.-M. (2022). No TitleExplaining the Help-Seeking Intentions of Adolescents Subject to Sexual Exploitation in Tanzania: An Application of the Theory of Planned Behavior. Journal of Interpersonal Violence, 37(17–18).

Moradpour, S., Shahnazi, H., & Hassanadzeh, A. (2022). Application of Theory of Planned Behavior in Pregnant Women Training Regarding Urinary Tract Infection Prevention Behaviors: A Randomized Controlled Trial. International Quarterly of Community Health Education

Muddiman, A., Flores, L., & Boyce, B (2021). Descriptive and Injunctive Incivility Norms in Political Campaigns: Differences Across Behavior Type, Candidate Gender, and Candidate Party Position. American Behavioral Scientist, 1–18.

PricewaterHouse Cooper. (2019). Crossing the lines: How fintech is propelling FS and TMT firms out of their lanes: Global Fintech Report.

Rakotoasimbola, E. & Blili, S. (2019). Measures of fit impacts: Application to the causal model of consumer involvement. International Journal of Market Research, 1(77–92)

Ringle, C. M. & Sarstedt, M. (2016). Gain more insight from your PLS-SEM results The importance-performance map analysis. Industrial Management & Data Systems, 116(9), 1865–1886.

Ruben, D.-H. (2016). A conditional theory of trying. Philosophical Studies, 173, 271–287.

Ryu, H. (2018). What Makes Users Willing or Hesitant to Use Fintech? The Moderating Effect of User Type. Industrial Management + Data Systems, 118(3), 541–569.

Sarstedt, M. & Hwang, H. (2020). Advances in composite‑based structural equation modeling. Behaviormetrika, 47, 213–217

Schuffel, P. (2017). "Taming the Beast: A Scientific Definition of Fintech. Journal of Innovation Management, 4(4), 32–54.

Sihombing, L., Soelton, M., Saratian, E. T. P., Arief, H., & Setiawan, M. (2019, November). ENTREPRENEURSHIP EDUCATION FOR MSMES AND YOUTH ORGANIZATION (KARANG TARUNA). ICCD, 2(1), pp. 76-79.

Sitanggang, L. M. S. (2021). Perbankan Menilai Segmen UMKM Masih Besar untuk Digarap. Kontan.Co.Id.

Smith, M. C. H. & Bazis, P. S. (2020). Conducting Mixed Methods Research Systematic Methodological Reviews: A Review of Practice and Recommendations. Journal of Mixed Methods Research, 1–21

Tabachnick, B. G. and Fidell, L. S. (2019). Using Multivariate Statistics (7th ed.). Pearson Education, Inc or its affiliates.

Thaker, H. M. T., Khaliq, A., Mand, A. A., Hussain, H. I., Thaker, M. A. B. M. T., & Pitchay, A. B. A. (2020). Exploring the Drivers of Social Media Marketing in Malaysian Islamic Banks: An Analysis via Smart PLS Approach. Journal of Islamic Marketing, 12, 145–65.

Thomas, B., Quintal, V. A., & Phau, I. (2018). Wine tourist engagement with the winescape: Scale Development And Validation. Journal of Hospitality & Tourism Research, 42(5), 793–828.

Weijters, B. & Baumgartner, H (2019). Analyzing Policy Capturing Data Using Structural Equation Modeling for Within-Subject Experiments (SEMWISE). Organizational Research Methods, 22(3), 623–648..

Xie, J., Ye, L., Huang, W., & Ye, M. (2021). Understanding Fintech Platform Adoption: Impacts of Perceived Value and Perceived Risk. Journal of Theoretical and Applied Electronic Commerce Research, 16, 893–911.

Yan, C., Siddiq, A. B., Akter, N., & Dong, Q. (2021). Factors Influencing the Adoption Intention of Using Mobile Financial Service during the COVID-19 Pandemic: The Role of FinTech. 007/s11356-021-17437-y



  • There are currently no refbacks.

MIX: Jurnal Ilmiah Manajemen
Journal URL:
Journal DOI: 10.22441/jurnal_mix
P-ISSN: 2088-1231
E-ISSN: 2460-5328

Editor's Address:

Magister Management Department, Universitas Mercu Buana.
Tedja Buana Building 4th Floor.
Jl. Menteng Raya No. 29, Jakarta 10340.

The Journal is Indexed and Abstracting by:


Analytics Made Easy - StatCounter
View My Stats