Quality circle implementation to reduce defects in cast steel products in the heavy equipment industry
Abstract
Keywords
Full Text:
PDFReferences
Ahmed, M., & Ahmad, N. (2011). An Application of Pareto Analysis and Cause-and-Effect Diagram (CED) for Minimizing Rejection of Raw Materials in Lamp Production Process. Management Science and Engineering, 5(3), 87. https://doi.org/10.3968/j.mse.1913035X20110503.320
Barot, R. S., Patel, J., Sharma, B., Rathod, B., Solanki, H., & Patel, Y. (2019). Lean six sigma feasibility and implementation aspect in cast iron foundry. Materials Today: Proceedings, 28, 1084–1091. https://doi.org/10.1016/j.matpr.2020.01.087
Calderón, J. C., Koch, L., Bandl, C., Kern, W., Jilg, J., Schilp, C., Moritzer, E., & Grundmeier, G. (2020). Multilayer coatings based on the combination of perfluorinated organosilanes and nickel films for injection moulding tools. Surface and Coatings Technology, 399. https://doi.org/10.1016/j.surfcoat.2020.126152
Chandra Kandpal, B., Johri, N., Kumar, B., Patel, A., Pachouri, P., Alam, M., Talwar, P., Sharma, M. K., & Sharma, S. (2021). Experimental study of foundry defects in aluminium castings for quality improvement of casting. Materials Today: Proceedings, 46, 10702–10706. https://doi.org/10.1016/j.matpr.2021.01.513
Chelladurai, C., Mohan, N. S., Hariharashayee, D., Manikandan, S., & Sivaperumal, P. (2020). Analyzing the casting defects in small scale casting industry. Materials Today: Proceedings, 37(Part 2), 386–394. https://doi.org/10.1016/j.matpr.2020.05.382
Dybowski, B., Kiełbus, A., & Poloczek, Ł. (2023). Effects of die-casting defects on the blister formation in high-pressure die-casting aluminum structural components. Engineering Failure Analysis. https://doi.org/10.1016/j.engfailanal.2023.107223
Goyal, A., Agrawal, R., & Kumar Sharma, A. (2022). Green quality circle: Achieving sustainable manufacturing with low investment. Resources, Conservation and Recycling Advances, 15. https://doi.org/10.1016/j.rcradv.2022.200103
Grover, V., Sengupta, P., Bhanumurthy, K., & Tyagi, A. K. (2006). Electron probe microanalysis (EPMA) investigations in the CeO 2-ThO2-ZrO2 system. Journal of Nuclear Materials, 350(2), 169–172. https://doi.org/10.1016/j.jnucmat.2006.01.001
Guleria, P., Pathania, A., Bhatti, H., Rojhe, K., & Mahto, D. (2021). Leveraging Lean Six Sigma: Reducing defects and rejections in filter manufacturing industry. Materials Today: Proceedings, 46, 8532–8539. https://doi.org/10.1016/j.matpr.2021.03.535
Hodbe, G. A., & Shinde, B. R. (2018). Design and Simulation of LM 25 Sand Casting for Defect Minimization. Materials Today: Proceedings, 5(2), 4489–4497. https://doi.org/10.1016/j.matpr.2017.12.018
Lal, R., Bolla, B. K., & Sabeesh, E. (2023). Efficient Neural Net Approaches in Metal Casting Defect Detection. Procedia Computer Science, 218, 1958–1967. https://doi.org/10.1016/j.procs.2023.01.172
Li, Y., Liu, J., Zhong, G., Huang, W., & Zou, R. (2021). Analysis of a diesel engine cylinder head failure caused by casting porosity defects. Engineering Failure Analysis, 127. https://doi.org/10.1016/j.engfailanal.2021.105498
Nwaogu, U. C., & Tiedje, N. S. (2011). Foundry Coating Technology: A Review. Materials Sciences and Applications, 02(08), 1143–1160. https://doi.org/10.4236/msa.2011.28155
Pastor-López, I., Sanz, B., Tellaeche, A., Psaila, G., de la Puerta, J. G., & Bringas, P. G. (2021). Quality assessment methodology based on machine learning with small datasets: Industrial castings defects. Neurocomputing, 456, 622–628. https://doi.org/10.1016/j.neucom.2020.08.094
Skryabin, M. L., & Likhanov, V. A. (2019). The study of casting defects in steel 35HGSL. Journal of Physics: Conference Series, 1399(4). https://doi.org/10.1088/1742-6596/1399/4/044063
Xu, Y., Li, G., Jiang, W., Zhan, J., Yu, Y., & Fan, Z. (2022). Investigation on characteristic and formation mechanism of porosity defects of Al–Li alloys prepared by sand casting. Journal of Materials Research and Technology, 19, 4063–4075. https://doi.org/10.1016/j.jmrt.2022.06.148
Yu, H., Li, X., Song, K., Shang, E., Liu, H., & Yan, Y. (2020). Adaptive depth and receptive field selection network for defect semantic segmentation on castings X-rays. NDT and E International, 116. https://doi.org/10.1016/j.ndteint.2020.102345
DOI: http://dx.doi.org/10.22441/oe.2023.v15.i3.094
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Operations Excellence: Journal of Applied Industrial Engineering
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Journal ISSN:
Print ISSN: 2085-4293 | |
Online ISSN: 2654-5799 |
Tim Editorial Office
Operations Excellence: Journal of Applied Industrial Engineering
Magister Teknik Industri Universitas Mercu Buana
Jl. Raya Meruya Selatan No. 1 Kembangan Jakarta Barat
Email: [[email protected]]
Website: http://publikasi.mercubuana.ac.id/index.php/oe
Journal DOI: 10.22441/oe
The Journal is Indexed and Journal List Title by:
Operations Excellence: Journal of Applied Industrial Engineering is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.