Quality improvement of DB-CDP with integration of CRISP-DM and six sigma method
Abstract
Keywords
Full Text:
PDFReferences
Adrita, M. M., Brem, A., O’sullivan, D., Allen, E., & Bruton, K. (2021). Methodology for data-informed process improvement to enable automated manufacturing in current manual processes. Applied Sciences (Switzerland), 11(9). https://doi.org/10.3390/app11093889
Andi, T., & Utami, E. (2018). Association rule algorithm with FP growth for book search. IOP Conference Series: Materials Science and Engineering, 434(1). https://doi.org/10.1088/1757-899X/434/1/012035
Ayele, W. Y. (2020). Adapting CRISP-DM for Idea Mining A Data Mining Process for Generating Ideas Using a Textual Dataset. In IJACSA) International Journal of Advanced Computer Science and Applications, 11(6), 20-31. https://doi.org/10.14569/IJACSA.2020.0110603.
Bhargava, M., & Gaur, S. (2021). Process Improvement Using Six-Sigma (DMAIC Process) in Bearing Manufacturing Industry: A Case Study. IOP Conference Series: Materials Science and Engineering, 1017(1). https://doi.org/10.1088/1757-899X/1017/1/012034
D. C. Montgomery. (2013). Introduction To Statistical Quality Control (7th ed., Vol. 7). John Wiley & Sons Inc.
da Silva, I. B., Filho, M. G., Agostinho, O. L., & Lima Junior, O. F. (2019). A new lean six sigma framework for improving competitiveness. Acta Scientiarum - Technology, 41(1), 37327. https://www.redalyc.org/journal/3032/303260200027/html/
F. Schäfer, C. Zeiselmair, J. Becker and H. Otten. (2018). Synthesizing CRISP-DM and Quality Management: A Data Mining Approach for Production Processes. 2018 IEEE International Conference on Technology Management, Operations and Decisions (ICTMOD), Marrakech, Morocco, 2018, 190-195. https://doi.org/10.1109/ITMC.2018.8691266
Joseph C. S. (2018). Six Sigma: A Complete Step-By-Step Guide (Joseph C. S, Ed.). Council for Six Sigma certification (C.S.S.C).
Liu, C. Y., & Sun, Y. F. (2009). Application of data mining in production quality management. 3rd International Symposium on Intelligent Information Technology Application, IITA 2009, 2, 284–287. https://doi.org/10.1109/IITA.2009.81
Morlock, F., & Boßlau, M. (2021). Concept for Enabling Customer-oriented Data Analytics via Integration of Production Process Improvement Methods and Data Science Methods. Procedia CIRP, 104, 542–546. https://doi.org/10.1016/j.procir.2021.11.091
P. Chapman, R. K., & Clinton, J. (2000). CRISP-DM 1.0 : Step-by-step data mining guide. DaimlerChrysler.
Saxena, M. M. (2021). Six Sigma Methodologies and its Application in Manufacturing Firms. International Journal of Engineering and Management Research, 11(4), 79-85. https://doi.org/10.31033/ijemr.11.4.10
Shaukat Dar, K., Shaukat, K., Zaheer, S., & Nawaz, I. (2017). Association Rule Mining: An Application Perspective Data Privacy View project Machine Learning and Cyber Security View project Association Rule Mining: An Application Perspective. International Journal of Computer Science and Innovation, 2015(1), 29–38. https://www.researchgate.net/publication/284721728
Steinberg, D. (2009). Chapter 10 CART: Classification and Regression Trees. https://www.researchgate.net/publication/265031802
Theodora, T., Fitriana, R., & Habyba, A. N. (2021). Quality improvement of NH1X36B pre-printed box with QM-CRISP DM approach at PT X. Operations Excellence: Journal of Applied Industrial Engineering, 13(3), 298-309. http://dx.doi.org/10.22441/oe.2021.v13.i3.028
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Operations Excellence: Journal of Applied Industrial Engineering
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Journal ISSN:
Print ISSN: 2085-4293 | |
Online ISSN: 2654-5799 |
Tim Editorial Office
Operations Excellence: Journal of Applied Industrial Engineering
Magister Teknik Industri Universitas Mercu Buana
Jl. Raya Meruya Selatan No. 1 Kembangan Jakarta Barat
Email: [[email protected]]
Website: http://publikasi.mercubuana.ac.id/index.php/oe
Journal DOI: 10.22441/oe
The Journal is Indexed and Journal List Title by:
Operations Excellence: Journal of Applied Industrial Engineering is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.