An analysis of human errors in the receiving process of raw material warehouses in the automotive industry using HEART and SHERPA methods

Anggie Alviandy, Raden Adriyani Oktora

Abstract


The development of industrial manufacturing automation drives the need for efficiency, but the majority of part receiving processes in the automotive warehouse department are still traditional, making them prone to human error. This research aims to identify the causes of human error in receiving, analyze its impact on warehouse accuracy and efficiency, and provide recommendations for improvement. Periodic data from July-December 2024 shows that 43.27% of warehouse errors occurred during receiving. The quantitative method Human Error Assessment and Reduction Technique (HEART) was applied to 6 main activities and 12 subtasks, resulting in the highest error probability (HEP) for the subtask of checking the physical condition of the part (HEP = 12.085). The qualitative approach Systematic Human Error Reduction and Prediction Approach (SHERPA) identified the dominance of action errors and checking errors, particularly in part checking, data input, material handling, and document verification. The combination of findings from HEART-SHERPA reveals that human error slows down the receiving process, disrupts actual stock, and delays production flow. Recommendations for improvement include (1) technical training and routine briefings to enhance operator competency, (2) implementing a buddy system and double verification using checklists, and (3) re-layouting the transit area with tag labels and structured archiving.

Keywords


human error; HEART; SHERPA; receiving warehouse; Automotive Industry

Full Text:

PDF

References


Alatas, A. H., & Putri, R. J. K. (2017). Identifikasi Human Eror Pada Proses Produksi Cassava Chips Dengan Menggunakan Metode Sherpa Dan Heart Di Pt. Indofood Fritolay Makmur. Jurnal Pasti, 11(1), 98–110.

Aliabadi, M. M., Mohammadfam, I., & Khorshidikia, S. (2024). Human error identification and risk assessment in loading and unloading of petroleum products by road trucks using the SHERPA and fuzzy inference system method. Heliyon, 10(15).

Arya, B., Shidik, A., Khasanah, S., Auvia, S. D., Industri, T., & Sri, U. S. (2023). Analisis Human Error pada Proses Foto Copy Menggunakan Metode Human Error Identification in Systems Tool (Studi Kasus Toko Gembyang). In JERA : Journal Engineering Research and Application (Vol. 2, Issue 1).

Bell, J., & Holroyd, J. (2009). Review of human reliability assessment methods. Health & Safety Laboratory, 78.

Cahyani, S. N., Safirin, M. T., Donoriyanto, D. S., & Rahmawati, N. (2022). Human Error Analysis To Minimize Work Accidents Using The Heart And Sherpa Methods At Pt. Wonojati Wijoyo. Prozima (Productivity, Optimization And Manufacturing System Engineering), 6(1), 48–59.

Frankfurt. (2021). IFR presents World Robotics 2021 reports “Robot Sales Rise Again” - #WorldRobotics. IFR International Federation of Robotics, available at: https://ifr.org/ifr-press-releases/news/robot-sales-rise-again

(accessed: 28 October 2024)

Frazelle, E. (2002). Supply Chain strategic. McGraw-Hill/Irwin.

Octaviani, F., & Arifin, M. D. (2024). Analysis of Human Error Probability at Shipyard Using Human Error Assessment and Reduction Technique (HEART). International Journal of Marine Engineering Innovation and Research, 9(1).

Pamuka, A. S., & Susanto, N. (2018). Human Reliability Assesment Dengan Metode Heart Sebagai Upaya Mengurangi Human Error Pada Pt. Multipanel Intermitra Mandiri. Industrial Engineering Online Journal, 7(3).

Pradipta, N. S., & Susanto, N. (2023). Analisis Human Error Dengan Metode Sherpa Dan Heart Pada Pt Pelita Tomangmas Karanganyar. Industrial Engineering Online Journal, 12(4).

Rammadaniya, P., & Mahbubah, N. (2022). Integration of the HEART and SHERPA approach to evaluating human errors in the refinery salt production. Jurnal Sistem Teknik Industri, 24(2), 177–193.

Rizky, R. K., & Nugraha, A. E. (2022). Analisis Human Error Terhadap Terjadinya Hilang Barang Pada Gudang Dengan Metode Sherpa And Heart di PT. XYZ. Jurnal Ilmiah Wahana Pendidikan, 8(4), 62–69.

Stanton, N. A., & Baber, C. (2002). Error by design: methods for predicting device usability. Design Studies, 23(4), 363–384.

Suhandoko. (2024). Otomasi Industri: Revolusi atau Ancaman Bagi Pekerja Manusia? VIVA.Co.Id. available at: https://wisata.viva.co.id/berita/12053-otomasi-industri-revolusi-atau-ancaman-bagi-pekerja-manusia?page=all

(accessed: 7 September 2024)

Tahapary, G. L., & Saptadi, S. (2022). Analisis Human Error Dengan Metode Systematic Error Reduction And Prediction Approach (Sherpa) Dan Human Error Assessment And Reduction Technique (Heart) Pada Operator Cv. Catur Bhakti Mandiri Studi Kasus: Cv. Catur Bhakti Mandiri. Industrial Engineering Online Journal, 11(4).

Utama, A. S. P., Tambunan, W., & Fathimahhayati, L. D. (2020). Analisis Human Error pada Proses Produksi Keramik dengan Menggunakan Metode HEART dan SHERPA. Jurnal INTECH Teknik Industri Universitas Serang Raya, 6(1), 12–22. https://doi.org/10.30656/intech.v6i1.2114

Williams, J. C. (1986). A proposed method for assessing and reducing human error. Proc. 9th Advances in Reliability Technology Symp.

Woods, D., Dekker, S., Cook, R., Johannesen, L., & Sarter, N. (2017). Behind human error. CRC Press.




DOI: http://dx.doi.org/10.22441/oe.2025.v17.i3.151

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Operations Excellence: Journal of Applied Industrial Engineering

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Journal ISSN:

Portal ISSNPrint ISSN: 2085-4293
Online ISSN: 2654-5799

Tim Editorial Office
Operations Excellence: Journal of Applied Industrial Engineering

Magister Teknik Industri Universitas Mercu Buana
Jl. Raya Meruya Selatan No. 1 Kembangan Jakarta Barat
Email: [[email protected]]
Website: http://publikasi.mercubuana.ac.id/index.php/oe
Journal DOI: 10.22441/oe

The Journal is Indexed and Journal List Title by:

      

 

 

Operations Excellence: Journal of Applied Industrial Engineering is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.