The application of machine learning algorithms for assessing the maturity level of palm fruits as the prominent commodity in the Western-Southern Area of Aceh

Rizki Agam Syahputra, Fajar Okta Widarta

Abstract


The potential of palm oil plantations in Aceh is substantial, with the province ranking eighth in Indonesia for palm oil cultivation. Aceh boasts a vast oil palm plantation area of 470.8 thousand hectares, comprising 44% of Aceh's total plantation land. Palm fruit quality directly impacts palm oil production, emphasizing the need for consistent maturity levels. To address this, computer algorithms, especially machine learning, have been applied. This study introduces the Self-Organizing Map (SOM) Algorithm for palm fruit maturity determination. SOM's reliability in capturing dataset topology offers a diverse classification process, revolutionizing palm fruit maturity detection and optimizing palm oil production. This study uses 40 dataset consisted of 20 mature and 20 unmature palm fruit image as the basis data which then converted into RGB and HSV value with Matlab engine. The result of the study indicates that the SOM algorithm is capable of classifying the maturity detection with 100% precision result. The SOM algorithm is synthesized in a Graphical User Interface that is capable of reading and classifying the input data into the output cluster.


Keywords


palm fruit; maturity detection; Self Organizing Map (SOM)

Full Text:

PDF

References


Abdullah, A., & Pahrianto, P. (2017). Sistem klasifikasi kematangan tomat berdasarkan warna dan bentuk menggunakan metode support vector machine (SVM). JSI: Jurnal Sistem Informasi (E-Journal), 9(2). https://doi.org/10.36706/JSI.V9I2.5007

Arum, R. P., Prasetiadi, A., & Ramdani, C. (2021). Klasifikasi rasa berdasarkan citra buah menggunakan algoritma convolutional neural network dengan teknik identitas ganda. IJIS - Indonesian Journal On Information System, 6(1), 79–88. https://doi.org/10.36549/IJIS.V6I1.132

Asri, P. P., & Wulanningrum, R. (2021). Implementation of SOM (Self Organizing Maps) for Identification of Tomato Fruit Maturity. JTECS : Jurnal Sistem Telekomunikasi Elektronika Sistem Kontrol Power Sistem Dan Komputer, 1(2), 185–192. https://doi.org/10.32503/JTECS.V1I2.1747

Binder, H., & Löffler-Wirth, H. (2014). Analysis of large-scale OMIC data using Self Organizing Maps. In Encyclopedia of Information Science and Technology.

BPS Aceh. (2022). Luas Areal dan Produksi Tanaman Perkebunan Sawit. Retrieved August 30, 2023, from https://acehbaratkab.bps.go.id/indicator/54/162/1/luas-areal-dan-produksi-tanaman-perkebunan-sawit.html

Chaudhary, V., Bhatia, R. S., & Ahlawat, A. K. (2014). A novel Self-Organizing Map (SOM) learning algorithm with nearest and farthest neurons. Alexandria Engineering Journal, 53(4), 827–831. https://doi.org/10.1016/J.AEJ.2014.09.007

Fadhlul Barkah, M., Rekayasa, J., Komputer, S., Mipa, F., Tanjungpura, U., Prof, J., … Pontianak, N. (2020). Klasifikasi Rasa Buah Jeruk Pontianak Berdasarkan Warna Kulit Buah Jeruk Menggunakan Metode K-Nearest Neighbor. Coding Jurnal Komputer Dan Aplikasi, 8(1), 55–66. Retrieved from https://jurnal.untan.ac.id/index.php/jcskommipa/article/view/39193

Fitrya, N.-, Wirman, S. P., & Fitri, W.-. (2018). IDENTIFIKASI KARAKTERISTIK BUAH KELAPA SAWIT SIAP PANEN DENGAN METODE LASER SPEKEL IMAGING (LSI). Photon: Jurnal Sain Dan Kesehatan, 9(1), 139–142. https://doi.org/10.37859/JP.V9I1.1068

Himmah, E. F., Widyaningsih, M., & Maysaroh, M. (2020). Identifikasi Kematangan Buah Kelapa Sawit Berdasarkan Warna RGB Dan HSV Menggunakan Metode K-Means Clustering. Jurnal Sains Dan Informatika, 6(2), 193–202. https://doi.org/10.34128/JSI.V6I2.242

Jamil, A., Hameed, A. A., & Orman, Z. (2022). A faster dynamic convergency approach for self-organizing maps. Complex and Intelligent Systems, 9(1), 677–696. https://doi.org/10.1007/S40747-022-00826-2

Michael, A. (2022). Komparasi Kombinasi Pre-trained Model dengan SVM pada Klasifikasi Kematangan Kopi Berbasis Citra. 7(1). https://doi.org/10.47178/dynamicsaint.v5xx.xxxx

Paramita, C., Rachmawanto, E. H., Sari, C. A., Rosal, D., & Setiadi, I. M. (2019). Klasifikasi Jeruk Nipis Terhadap Tingkat Kematangan Buah Berdasarkan Fitur Warna Menggunakan K-Nearest Neighbor. Jurnal Informatika: Jurnal Pengembangan IT, 4(1), 1–6. https://doi.org/10.30591/JPIT.V4I1.1267

Pryo Adi Lukito, & Sudrajat. (2017). Pengaruh Kerusakan Buah Kelapa Sawit terhadap Kandungan Free Fatty Acid dan Rendemen CPO di Kebun Talisayan 1 Berau. Buletin Agrohorti, 5(1), 37–44. https://doi.org/10.29244/AGROB.V5I1.15890

Raysyah, S., Arinal, V., & Mulyana, D. I. (2021). Klasifikasi Tingkat Kematangan Buah Kopi Berdasarkan Deteksi Warna Menggunakan Metode Knn Dan Pca. JSiI (Jurnal Sistem Informasi), 8(2), 88–95. https://doi.org/10.30656/JSII.V8I2.3638

Samantha, T. (2022). Pengembangan Model Pembelajaran Mesin Prediksi Kematangan Buah Pisang Berdasarkan Citra Digital. KALBISIANA Jurnal Sains, Bisnis Dan Teknologi, 8(1), 266–271. Retrieved from http://ojs.kalbis.ac.id/index.php/kalbisiana/article/view/264

Soedarmaji, A., & Ediati, R. (2011). Identifikasi Kematangan Buah Tropika Berbasis Sistem Penciuman Elektronik Menggunakan Deret Sensor Gas Semikonduktor Dengan Metode Jaringan Syaraf Tiruan. Jurnal Keteknikan Pertanian, 25(1). https://doi.org/10.19028/JTEP.025.1

Syahputra, R. A., Andriansyah, Sentia, P. D., & Arifin, R. (2022). Determining Optimal New Waste Disposal Facilities Location by Using Set Covering Problem Algorithm. Proceedings of the Conference on Broad Exposure to Science and Technology 2021 (BEST 2021), 210, 295–301. https://doi.org/10.2991/AER.K.220131.045

Ukwuoma, C. C., Zhiguang, Q., Bin Heyat, M. B., Ali, L., Almaspoor, Z., & Monday, H. N. (2022). Recent Advancements in Fruit Detection and Classification Using Deep Learning Techniques. Mathematical Problems in Engineering, 2022. https://doi.org/10.1155/2022/9210947




DOI: http://dx.doi.org/10.22441/oe.2024.v16.i1.102

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Operations Excellence: Journal of Applied Industrial Engineering

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Journal ISSN:

Portal ISSNPrint ISSN: 2085-4293
Online ISSN: 2654-5799

Tim Editorial Office
Operations Excellence: Journal of Applied Industrial Engineering

Magister Teknik Industri Universitas Mercu Buana
Jl. Raya Meruya Selatan No. 1 Kembangan Jakarta Barat
Email: [[email protected]]
Website: http://publikasi.mercubuana.ac.id/index.php/oe
Journal DOI: 10.22441/oe

The Journal is Indexed and Journal List Title by:

                 

 

 

Operations Excellence: Journal of Applied Industrial Engineering is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.