Optimization of soybean distribution costs with the transportation method: a case in SME’s

Arief Suardi Nur Chairat, Ade Caswito, Lia Nur Octavia, Nur Shania Asnul, Annisa Fauziah, Alisya Sulifianti Bahasoan

Abstract


The distribution of soybean raw materials is not only related to aspects of quality and smooth production of tofu making but can also influence cost efficiency to increase competitiveness. In this situation, the number of soybeans shipped, transportation costs per unit, and the choice of transportation service used are transportation model issues. This research aims to determine the cheapest cost of sending soybean raw materials from four agent locations to three tofu factory locations with a choice of two transportation services that can be adopted. The case studied is a case of unbalanced transportation with supply greater than demand. The method used is the application of a transportation model, with the Northwest Corner method to determine the initial base solution and the Modified Distribution method to optimize distribution costs for soybean raw materials in the context of tofu production supply. Based on data processing, the results showed that the first and second transportation services offered services with a total shipping cost of IDR 691,750 and IDR 605,250. Observation of these differences leads to the conclusion that the second transportation service offers the most optimal value for money. The research results provide additional knowledge for tofu makers in optimizing costs and delivery routes for soybean raw materials, supporting production continuity, and increasing competitiveness in an ever-changing market.


Keywords


transportation model; soya bean; transportation services; northwest corner; modified distribution

Full Text:

PDF

References


Ahmed, J. S., Mohammed, H. J., & Chaloob, I. Z. (2021). Application of a fuzzy multi-objective defuzzification method to solve a transportation problem. Materials Today: Proceedings, S2214785320407801. https://doi.org/10.1016/j.matpr.2020.12.1062

Almahdi, D., Sari, R. P., Momon, A., & Mahendra, D. (2023). Optimasi Biaya Pengiriman dengan Penerapan Metode Least Cost dan Metode Modified Distribution di UMKM Home Industry Tahu.

Amaliah, B., Fatichah, C., & Suryani, E. (2022). A new heuristic method of finding the initial basic feasible solution to solve the transportation problem. Journal of King Saud University - Computer and Information Sciences, 34(5), 2298–2307. https://doi.org/10.1016/j.jksuci.2020.07.007

Ashour, M. A. H., Ahmed, A. A., & Al-dahhan, I. A. H. (2022). Minimizing Costs of Transportation Problems Using the Genetic Algorithm. In X.-S. Yang, S. Sherratt, N. Dey, & A. Joshi (Eds.), Proceedings of Sixth International Congress on Information and Communication Technology (pp. 165–173). Springer. https://doi.org/10.1007/978-981-16-2377-6_18

Batubara, F. H., & Widyasari, R. (2023). Penerapan Metode Transportasi dan Transhipment Menggunakan Linear Programming dalam Efisiensi Biaya Distribusi Barang. 7.

Bhadane, A. P., Manjarekar, S. D., & Dighavkar, C. G. (2021). APBs method for the IBFS of a Transportation Problem and comparison with North West Corner Method.

Evtyukov, S., Novikov, A., Shevtsova, A., & Marusin, A. (2021). Solutions to the main transportation problems in the Arctic zone of the Russian Federation. Transportation Research Procedia, 57, 154–162. https://doi.org/10.1016/j.trpro.2021.09.037

Hartawan, R., & Marwan, E. (2017). MODEL DISTRIBUSI BENIH KEDELAI LABEL BIRU DENGAN SISTEM JABALSIM DAN JABALSIM TERKENDALI DI KABUPATEN TANJUNG JABUNG TIMUR. Jurnal Media Pertanian, 2(2), 73. https://doi.org/10.33087/jagro.v2i2.42

Kader, Md. S. F., & Alam, H. (2019). Use of a New Transportation Algorithm for Profit Maximization. European Scientific Journal ESJ, 15(15). https://doi.org/10.19044/esj.2019.v15n15p262

Kusumawardani, R. (2017). OPTIMIZATION OF TRANSPORTATION COST USING GENETIC ALGORITHM. Jurnal Eksakta, 17(1), 33–45. https://doi.org/10.20885/eksakta.vol17.iss1.art4

M. L. Aliyu, U. Usman, Z. Babayaro, & M. K. Aminu. (2019). North-West corner method, Least Cost (minimum) method and Vogel Approximation method). American Journal of Operational Research, 9(1), 1–7.

Mitlif, R. J., Rasheed, M., & Shihab, S. (2020). An Optimal Algorithm for a Fuzzy Transportation Problem. Journal of Southwest Jiaotong University, 55(3), 7. https://doi.org/10.35741/issn.0258-2724.55.3.7

Moslem, S., Saraji, M. K., Mardani, A., Alkharabsheh, A., Duleba, S., & Esztergar-Kiss, D. (2023). A Systematic Review of Analytic Hierarchy Process Applications to Solve Transportation Problems: From 2003 to 2022. IEEE Access, 11, 11973–11990. https://doi.org/10.1109/ACCESS.2023.3234298

Pečený, L., Meško, P., Kampf, R., & Gašparík, J. (2020). Optimisation in Transport and Logistic Processes. Transportation Research Procedia, 44, 15–22. https://doi.org/10.1016/j.trpro.2020.02.003

Prifti, V., Dervishi, I., Dhoska, K., Markja, I., & Pramono, A. (2020). Minimization of transport costs in an industrial company through linear programming. IOP Conference Series: Materials Science and Engineering, 909(1), 012040. https://doi.org/10.1088/1757-899X/909/1/012040

Putra, F. E., Purba, H. H., & Anggraeni, I. A. (2020). The optimization of distribution and transportation costs for common good products. International Journal of Industrial Optimization, 1(2), 111. https://doi.org/10.12928/ijio.v1i2.2368

Sang, T. T., Minh Thu, N., Hoang Khoi, T., Thi Kim Huong, N., Lan, L. T. N., & Van Thanh, N. (2021). The Optimization of Transportation Costs in Logistics Enterprises during the Covid-19 Pandemic. ARRUS Journal of Mathematics and Applied Science, 1(2), 62–71. https://doi.org/10.35877/mathscience567

Shaikh, M. S. R., Shah, S. F., & Memon, Z. (2018). An Improved Algorithm to Solve Transportation Problems for Optimal Solution.

Yuliana, Y., Tasari, T., Setiyaningsih, A., Munif, F. A., & Putri, M. F. (2022). Optimalisasi Biaya Transportasi Produk UMKM Naturies Indonesia Dengan Metode Northwest Corner dan Vogel’s Approximation. Jurnal Derivat: Jurnal Matematika dan Pendidikan Matematika, 9(2), 246–257. https://doi.org/10.31316/jderivat.v9i2.3138




DOI: http://dx.doi.org/10.22441/oe.2024.v16.i1.098

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Operations Excellence: Journal of Applied Industrial Engineering

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Journal ISSN:

Portal ISSNPrint ISSN: 2085-4293
Online ISSN: 2654-5799

Tim Editorial Office
Operations Excellence: Journal of Applied Industrial Engineering

Magister Teknik Industri Universitas Mercu Buana
Jl. Raya Meruya Selatan No. 1 Kembangan Jakarta Barat
Email: [[email protected]]
Website: http://publikasi.mercubuana.ac.id/index.php/oe
Journal DOI: 10.22441/oe

The Journal is Indexed and Journal List Title by:

                 

 

 

Operations Excellence: Journal of Applied Industrial Engineering is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.