Forecasting demand for frozen whole blocks of swanggi fish at PT. Hatni using a comparison of winter and decomposition methods

Tsaqofi Bintang Muslimah, Hidayat Hidayat, Yanuar Pandu Negoro

Abstract


PT. HATNI specializes in the export of frozen fish, particularly Swanggi (Priacanthus tayenus) and Kuniran fish. This study focuses on Swanggi fish due to its higher demand in the export market. Swanggi fish, a species of ray-finned marine fish, is characterized by blackish spots, large eyes, and a pink coloration, belonging to the family Priacanthidae. The objective of this research is to identify an effective forecasting method for estimating future export demand for frozen whole Swanggi fish, enabling the company to optimize its production and supply chain planning. Using 2023 data with evident seasonal patterns, trends, and seasonality, the study compares the Winter Multiplicative method and the Decomposition method. Through trial and error, the Winter Multiplicative method was identified as the most accurate, with parameters of α = 0.9, β = 0.1, and γ = 0.9. This method yielded the lowest error values: MAD of 1,602, MSD of 9,161,073, and MAPE of 3%. These results provide PT. HATNI with a reliable forecasting tool to meet future market demand effectively.


Keywords


Swanggi fish; forecast; winter; decomposition

Full Text:

PDF

References


Andriani, N., Wahyuningsih, S., & Siringoringo, M. (2022). Application of Double Exponential Smoothing Holt and Triple Exponential Smoothing Holt-Winter with Golden Section Optimization to Forecast Export Value of East Borneo Province. Jurnal Matematika, Statistika Dan Komputasi, 18(3), 475–483. https://doi.org/10.20956/j.v18i3.17492

Bimantoro, F. A., Madelan2, S., & Saluy, A. B. (2021). Forecasting With Time Series Method at PT. RSM in Bekasi Jawa Barat. https://doi.org/10.38035/dijefa.v2i3

Elghazali, M., Shahat, N., & Tawfeek, H. (2023). Effect of Freezing Methods on Protein Fractions of Nasser lake Fish meat during storage. Aswan University Journal of Environmental Studies, 4(4), 274–292. https://doi.org/10.21608/aujes.2023.215088.1161

Hadiyan Amaly, M., Pura Nurmayanti, W., & Nisrina, S. (2022). Perbandingan Analisis Dekomposisi dan Exponential Smoothing Holt Winters untuk Peramalan Rata-Rata Jumlah KPM PKH di NTB. In J Statistika (Vol. 15, Issue 2). https://doi.org/10.36456/jstat.vol15.no2.a5551

Hariguna, T. (2023). Comparison of Three Time Series Forecasting Methods on Linear Regression, Exponential Smoothing and Weighted Moving Average. International Journal of Informatics and Information Systems, 6(2), 89–102. https://doi.org/10.47738/ijiis.v6i2.165

Hendikawati, P., Subanar, Abdurakhman, & Tarno. (2020). A survey of time series forecasting from stochastic method to soft computing. Journal of Physics: Conference Series, 1613(1). https://doi.org/10.1088/1742-6596/1613/1/012019

Ihwah, A., Rucitra, A. L., Citraresmi, A. D. P., Jemal, M. A., & Ayyubi, S. A. (2021). Demand forecasting of button mushrooms using qualitative and quantitative methods at PT. S. IOP Conference Series: Earth and Environmental Science, 924(1). https://doi.org/10.1088/1755-1315/924/1/012054

Khemavuk, P., & Leenatham, A. (2020). A conceptual model for uncertainty demand forecasting by artificial neural network and adaptive neuro-fuzzy inference system based on quantitative and qualitative data. International Journal of Operations and Quantitative Management, 26(4), 285–302. https://doi.org/10.46970/2020.26.4.3

Kresnasari, D., Purwokerto, U., Sultan, J., 42, A. N., Klesem, K., & Selatan, P. (n.d.). The Effect Of Preservation With Salting And Freezing Methods On The Quality Of Milkfish (Chanos chanos). https://jurnal.unupurwokerto.ac.id/index.php/sciline. e-ISSN: 2776-3935

Lailiyah, I., Cahya, I., Rieke, D., & Ambarwati, D. (2024). The Impact of Rainfall and Wind Speed on The Outcome of Catching Swanggi Fish Using Cantrang Catch Tools in Brondong National Fishing Port (PPN) (Vol. 5, Issue 2). https://doi.org/10.62012/zl.v5i2.35902

Mamun, A. Al, Sohel, M., Mohammad, N., Haque Sunny, M. S., Dipta, D. R., & Hossain, E. (2020). A Comprehensive Review of the Load Forecasting Techniques Using Single and Hybrid Predictive Models. In IEEE Access (Vol. 8, pp. 134911–134939). Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/ACCESS.2020.3010702

Fajar, F., Ibrahim, M., Sofyan, R., & Nurcahyo, R. (2021, August). Short-term Forecasting of Spring Production Volume with Small Data Using Double Exponential Smoothing and Winters’ Method. In 1st Indian International Conference on Industrial Engineering and Operations Management, https://doi.org/10.46254/IN01.20210091.

Nugraheni, R. P., Rimawati, E., & Vulandari, R. T. (2022). Penerapan Metode Exponential Smoothing Winters Pada Prediksi Harga Beras. Jurnal Ilmiah SINUS, 20(2), 45. https://doi.org/10.30646/sinus.v20i2.608

Pertiwi, D. D. (2020). Applied Exponential Smoothing Holt-Winter Method for Predict Rainfall in Mataram City. Journal of Intelligent Computing and Health Informatics, 1(2), 45. https://doi.org/10.26714/jichi.v1i2.6330

Rizqi Az Zahran, F., & Prayudha Hidayat, A. (2024). Enhancing Demand Forecasting Accuracy for Electronic Components: A Case Study of PT Omron Indonesia. Journal of Applied Science, Technology & Humanities, 1(2), 126–143. https://doi.org/10.62535/1c5aef59

Siagian, A., & Supriana, T. (n.d.). Analysis of the Best Forecasting on Cocoa Production and Imports in Indonesia in 2022-2026 using the Triple Holt-Winters and ARIMA Methods Introduction. In Issue I Electronic Research Journal of Social Sciences and Humanities (Vol. 6). ISSN: 2706 – 8242. www.eresearchjournal.com

Supriatna, A., Lesmana, E., Aridin, L., Sukono, & Napitupulu, H. (2019). Comparison between multiplicative Holt Winter and decomposition method in predicting the number of incoming international tourists to Indonesia. IOP Conference Series: Materials Science and Engineering, 567(1). https://doi.org/10.1088/1757-899X/567/1/012047

Zellner, M., Abbas, A. E., Budescu, D. V., & Galstyan, A. (2021). A survey of human judgement and quantitative forecasting methods. In Royal Society Open Science (Vol. 8, Issue 2). Royal Society Publishing. https://doi.org/10.1098/rsos.201187




DOI: http://dx.doi.org/10.22441/oe.2024.v16.i3.121

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Operations Excellence: Journal of Applied Industrial Engineering

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Journal ISSN:

Portal ISSNPrint ISSN: 2085-4293
Online ISSN: 2654-5799

Tim Editorial Office
Operations Excellence: Journal of Applied Industrial Engineering

Magister Teknik Industri Universitas Mercu Buana
Jl. Raya Meruya Selatan No. 1 Kembangan Jakarta Barat
Email: [[email protected]]
Website: http://publikasi.mercubuana.ac.id/index.php/oe
Journal DOI: 10.22441/oe

The Journal is Indexed and Journal List Title by:

                 

 

 

Operations Excellence: Journal of Applied Industrial Engineering is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.